1	Tsunami Source Inversion Using Time-derivative Waveform of Offshore Pressure
2	Records to Reduce Effects of Non-Tsunami Components
3	
4	Tatsuya Kubota*1, Wataru Suzuki1, Takeshi Nakamura1, Naotaka Y. Chikasada1, Shin
5	Aoi ¹ , Narumi Takahashi ^{1,2} , Ryota Hino ³
6	¹ National Research Institute for Earth Science and Disaster Resilience
7	² Japan Agency for Marine-Earth Science and Technology
8	³ Graduate School of Science, Tohoku University
9	
10	Abbreviated title: Tsunami source inversion using time-derivative pressure waveform
11	
12	Corresponding author: Tatsuya Kubota (kubotatsu@bosai.go.jp)
13	National Research Institute for Earth Science and Disaster Resilience, 3-1, Tennodai,
14	Tsukuba, Ibaraki, 305-0006, Japan
15	

16 <u>Summary</u>

17	Offshore ocean bottom pressure gauges (OBPs) are often used to estimate the
18	spatial distribution of the initial sea-surface height associated with offshore earthquakes
19	(the tsunami source model). However, the sensors sometimes record pressure changes
20	that are neither related to tsunamis nor seafloor coseismic displacements (the non-tsunami
21	components) due to sensor rotation or tilt associated with ground shaking or due to long-
22	term mechanical drift. These non-tsunami components can be a source of error when
23	accurately estimating the tsunami source model and thus need to be removed to provide
24	reliable coastal tsunami forecasts. This paper proposes a new method that uses time-
25	derivative waveforms of the pressure time series from OBP records to robustly estimate
26	the tsunami source model, even when OBP data are perturbed by non-tsunami
27	components. Using OBP data associated with the 2011 Off-Miyagi earthquake (Mw 7.2)
28	and the 2016 Off-Mie earthquake (Mw 5.9), the performance of the method was evaluated
29	when reducing artefacts due to non-tsunami components. The tsunami source model was
30	found to be largely distorted when a conventional inversion method was used (because
31	of the non-tsunami components). However, the artefact was dramatically reduced when

32	using time-derivative waveforms, and the predicted coastal tsunami waveforms fitted
33	reasonably with those of observations, thereby suggesting that the new method effectively
34	suppresses artefacts caused by non-tsunami components. As the tsunami source models
35	estimated from pressure and time-derivative waveforms should be similar when OBP data
36	are not perturbed by non-tsunami components, we would be able to assess whether OBP
37	data are perturbed by non-tsunami components by evaluating that the tsunami source
38	models estimated from pressure waveforms and from time-derivative waveforms are
39	similar to each other.

40

41 Keywords

42 Tsunamis, Waveform inversion, Tsunami warning, Numerical modelling

1 INTRODUCTION

44	Offshore real-time tsunami observation networks have been established over the
45	past few decades (e.g. Kanazawa & Hasegawa 1997; Hino et al. 2001; González et al.
46	2005; Kaneda et al. 2015; Kawaguchi et al. 2015; Kanazawa et al. 2016; Uehira et al.
47	2016). A cabled tsunami observation network using ocean bottom pressure gauges
48	(OBPs), which is known as the Dense Oceanfloor Network System for Earthquakes and
49	Tsunamis (DONET), has been constructed off southwestern Japan by the Japan Agency
50	for Marine-Earth Science and Technology (JAMSTEC; Fig. 1a) (Kaneda et al. 2015;
51	Kawaguchi et al. 2015). In addition, the National Research Institute for Earth Science and
52	Disaster Resilience (NIED) has constructed an observation network, which is known as
53	the Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench
54	(S-net) (Kanazawa et al. 2016; Uehira et al. 2016) off northeastern Japan. Real-time
55	tsunami records are often used to provide rapid and reliable tsunami forecasts (e.g. Titov
56	et al. 2005; Tsushima et al. 2009, 2012; Baba et al. 2014; Gusman et al. 2014; Maeda et
57	al. 2015; Yamamoto et al. 2016a; 2016b; Tanioka 2018). For example, Tsushima et al.
58	(2009; 2012) developed a tsunami forecasting algorithm (the tsunami Forecasting based

on Inversion for initial Sea-surface Height; tFISH) that inverts offshore tsunami data to estimate the spatial distribution of initial sea-surface height (hereafter referred to as the tsunami source model) and then provide forecasts of coastal tsunamis based on the forward calculation.

63 Absolute pressure sensors manufactured by Paroscientific, Inc. (e.g. Watts & 64 Kontoyiannis 1990; Eble & Gonzalez 1991) are commonly used for offshore tsunami 65 observations (e.g., Kubota et al. 2015; 2017a; 2017b; Kaneda et al. 2015; Kawaguchi et 66 al. 2015; Kanazawa et al. 2016; Uehira et al. 2016). However, it has been reported that 67 the pressure outputs of the Paroscientific sensors strongly depend on their orientation 68 relative to the Earth's gravitational field, and thus their rotation or tilting can become a 69 source of observational errors (Chadwick et al. 2006). Wallace et al. (2016) investigated 70 the Paroscientific OBP data of an Mw 5.9 earthquake that occurred to the southeast off 71Mie-Prefecture, Japan, on 1 April 2016 (hereafter referred to as the Off-Mie earthquake, 72Fig. 1), and suggested that an OBP observed a pressure offset increase of ~10 hPa nearest the epicentre (corresponding to 10 cm of subsidence) (KME18 in Fig. 1a), which was 7374related neither to the tsunami nor to coseismic seafloor displacement and was actually

76seismic waves. We here note that a pressure change of 1 hPa is equivalent to a water height change of 1 cm, if assuming a water density of 1.03 g/cm³ and a gravity 77acceleration of 9.8 m/s². 7879Pressure sensors manufactured by Hewlett Packard, Inc. (Karrer & Leach 1969) 80 (hereafter, HP) have also used for offshore tsunami observations (e.g., Takahashi 1981; 81 Kanazawa & Hasegawa 1997; Hino et al. 2001), although they have been reported to have long-term mechanical drifts at a maximal rate of approximately 100 hPa/year (Inazu & 82 83 Hino 2011). Kubota et al. (2017a) investigated HP pressure data associated with a Mw 84 7.2 earthquake that occurred off Miyagi-Prefecture, Japan, on 9 March 2011 (hereafter referred to as the Off-Miyagi earthquake, Fig. 2) and found that the HP sensors drifted at 85 a rate of ~5 hPa/hr (approximately 0.1 hPa/min) within a few hours after the occurrence 86 87 of the earthquake. Long-term trends have also been found in Paroscientific sensors, with rates of less than tens of hPa/year (e.g. Watts & Kontoyiannis 1990; Polster et al. 2009; 88 Inazu & Hino 2011; Hino et al. 2014). Pressure offset changes and long-term trends 89 90 (hereafter referred to as the non-tsunami components) neither related to tsunamis nor to

caused by the rotation or tilting of the sensor associated with ground shaking due to

75

91 seafloor permanent displacement are a large source of error when estimating tsunami92 source models and providing coastal tsunami forecasts.

93	Some studies have assessed the effects of random observation errors on tsunami
94	forecasts (Takagawa & Tomita 2014; Tatsumi et al. 2014) and dynamic pressure changes
95	associated with seismic waves (Saito & Tsushima 2016). However, it has not yet been
96	adequately assessed how the non-tsunami components perturb the tsunami source model,
97	and the impact of the non-tsunami components on coastal tsunami forecasts has not yet
98	been investigated. Therefore, to provide accurate coastal tsunami forecasts, it is necessary
99	to develop a method that reduces the perturbation (i.e., the artefacts) of the tsunami source
100	model resulting from non-tsunami components. In the present study, we thus propose
101	such a method that uses time-derivative waveforms of the pressure time series. We also
102	use OBP data associated with the 2011 Off-Miyagi earthquake and the 2016 Off-Mie
103	earthquake to assess how the conventional approach used to estimate the tsunami source
104	model is affected when OBP data are perturbed by the non-tsunami components.
105	Furthermore, we assess how the new method proposed in this study effectively reduces
106	the artefacts due to non-tsunami components.

108 **2 METHODS**

109The tsunami waveform inversion used to estimate the tsunami source model 110 (hereafter referred to as the tsunami source inversion) assumes that observed waveforms 111 can be expressed as a superposition of Green's function from small unit tsunami source 112elements (e.g. Baba et al. 2005; Tsushima et al. 2009; 2012; Kubota et al. 2015). Note 113 that this approach does not estimate the slip distribution along the fault plane, which has been employed in many previous tsunami inversion studies (e.g., Satake 1989). An 114 115observational equation for the conventional tsunami source inversion using the pressure 116 time series can be expressed as follows, $d_i^{\rm obs}(t) = \sum_{i=1}^M G_{ij}(t)m_i,$ 117 (1)where $d_j^{obs}(t)$ is the observed waveform at the *j*th station, $G_{ij}(t)$ is Green's function, 118

which is the response to the *i*th unit source to the *j*th station (*M* is the total number of unit sources) and m_i is the amount of displacement of the *i*th unit tsunami source element. The inversion approach follows the idea that the least-square objective function, $s(\mathbf{m})$, is minimized, which is expressed as,

107

123
$$s(\mathbf{m}) = \sum_{j=1}^{N} |d_j^{obs}(t) - \sum_{i=1}^{M} G_{ij}(t)m_i|^2 \rightarrow \min$$
, (2)
124 where *N* denotes the total number of the stations. Equation (1) is expressed in a vector
125 form as
126 $\mathbf{d}^{obs} = \mathbf{Gm}$, (3)
127 where \mathbf{d}^{obs} is a vector consisting of observed pressure data, **G** is a matrix consisting of the
128 Green's function and **m** is a vector representing the displacement of the unit source
129 elements. In the tsunami source inversion, a spatial smoothing constraint is often imposed
130 as follows,
131 $\mathbf{0} = \mathbf{Sm}$, (4)
132 where a matrix, **S**, denotes the spatial smoothing constraints (e.g. Tsushima *et al.* 2009;
133 Gusman *et al.* 2013; Kubota *et al.* 2015). Using equations (1) and (2), a normal equation,
134 which is to be solved, is expressed as follows,
135 $\left(\begin{pmatrix} \mathbf{d}^{obs} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{G} \\ a \mathbf{S} \end{pmatrix} \mathbf{m}$, (5)
136 where a constant *a* indicates the weight of the smoothing constraint. Hereafter, we refer
137 to this approach as the conventional inversion.
138 When we assume that the vector **m** (the amount of the displacement of the unit

139 sources) does not depend on time, we can obtain the following observational equation by

140 a temporally differentiating equation (1) as

141
$$\frac{\partial d_j^{\text{obs}}}{\partial t}(t) = \sum_{i=1}^{M} \frac{\partial G_{ij}}{\partial t}(t) m_i, \qquad (6)$$

142 where $\partial/\partial t$ denotes the temporal differentiation. Considering the objective function

143 (similar to equation (2)) to be minimum, we can obtain the following equation,

144
$$\dot{\mathbf{d}}^{\text{obs}} = \dot{\mathbf{G}}\mathbf{m},\tag{7}$$

145 where $\dot{\mathbf{d}}^{obs}$ and $\dot{\mathbf{G}}$ denote a vector consisting of the time-derivatives of the pressure data

146 (left hand of equation (6)) and Green's function (right hand of equation (6)), respectively.

147 A normal equation can also be expressed as

148
$$\begin{pmatrix} \dot{\mathbf{d}}^{\text{obs}} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \dot{\mathbf{G}} \\ \beta \mathbf{S} \end{pmatrix} \mathbf{m}, \tag{8}$$

149 where β indicates the weight of the smoothing constrain (hereafter this approach is

150 referred to as the time-derivative inversion). By solving the normal equations (equations

151 (5) and (8)), the tsunami source model (vector **m**) is obtained.

152 If the pressure data (**d**^{obs} in equation (1)) is perturbed by non-tsunami components 153 (left panel in Fig. 3), the model vector **m** will not reflect the true tsunami source model.

154 Approximating the pressure offset changes resulting from ground shaking as a step

155	function (similar to OBP data at station KME18 in Fig. 1b) and the long-term trends as a
156	linear function, the associated time-derivative waveforms would be an impulse function
157	and a constant, respectively (right panel in Fig. 3), and the time-derivative waveform of
158	the perturbed pressure data ($\dot{\mathbf{d}}^{obs}$ in equation (7)) would be very similar to the original
159	time-derivative waveform. However, the perturbed pressure waveform is quite different
160	from the original pressure data, and it is thus expected that the time-derivative inversion
161	would be less affected by non-tsunami components than conventional inversion.
162	
163	3 APPLICATION TO 2011 OFF-MIYAGI EARTHQUAKE
164	3.1 Data and methods
165	We applied the time-derivative inversion to OBP data of the Off-Miyagi earthquake
166	of 9 March 2011 (Kubota et al. 2017a, 2017b) to assess the performance of the time-
167	derivative inversion. Kubota et al. (2017a) estimated the finite fault model of this event

(red rectangle in Fig. 2a) by inverting OBP data obtained near the focal area (green 168

triangles in Fig. 2a). The spatial distribution of the vertical seafloor displacement 169

calculated from the finite fault model is shown by the black contour lines in Fig. 2a. Using 170

the result of Kubota *et al.* (2017a) as a benchmark, we assessed the performance of the
time-derivative inversion.

173	We used seven Paroscientific OBPs (GJT3, P02, P03, P06, P07, P08 and P09)
174	installed by Tohoku University and two HP OBPs (TM1 and TM2) installed by the
175	Earthquake Research Institute (ERI) of the University of Tokyo (green triangles in Fig.
176	2a; described in detail in Kubota et al. (2017a)) (sampling interval of 1 s). We also used
177	data from coastal GPS buoys (Kato et al. 2005; Kawai et al. 2012) of the Port and Airport
178	Research Institute (PARI) of the National Institute of Maritime, Port and Aviation
179	Technology (MPAT) (yellow squares in Fig. 2a) to assess the performance of the coastal
180	tsunami forecasts.
181	We processed tsunami data using the following procedure, which is the same as that
182	presented in Kubota et al. (2017a). We removed ocean-tide components using a
183	theoretical tide model (Matsumoto et al. 2000). To reduce the high-frequency pressure
184	changes attributed to seismic and hydroacoustic waves (e.g., Matsumoto et al. 2012; Saito
185	2013; 2017; Saito & Tsushima 2016; An et al. 2017; Kubota et al. 2017b), we then
100	

filter to the OBP records (a cut-off period of 400 s) and a bandpass filter to GPS buoy records (passband of 400–3600 s) (Saito 1978). Furthermore, we removed hydrostatic pressure due to the water column above the OBPs, using the mean from a 20-min time window recorded prior to the focal time.

191 In the tsunami source inversion, we distributed 12×16 small unit source elements 192with a size of 20 km \times 20 km in an area of 130 km E–W \times 170 km N–S (rectangular area 193 in Fig. 4a and 4b) with a horizontal spacing of 10 km (overlapping with the adjacent unit 194 sources). Details of the unit source elements are described in Kubota et al. (2015). For simplicity, displacement of initial sea-surface height was assumed to be equal to seafloor 195196 displacement. We calculated the tsunami Green's function using a linear long wave equation with a finite difference method in local Cartesian coordinates (e.g. Satake 1995; 197 Saito et al. 2014), and the equations used in this study were as follows, 198

199
$$\frac{\partial P}{\partial t} = -g_0 h \frac{\partial \eta}{\partial x},$$

200
$$\frac{\partial Q}{\partial t} = -g_0 h \frac{\partial \eta}{\partial y}, \tag{8}$$

$$\frac{\partial \eta}{\partial t} = -\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y},$$

where the parameters P and Q are the vertically-averaged horizontal velocity in x- and y-

203	directions, respectively; the parameter η is the water height from the static sea surface; h
204	is water depth and g_0 is the gravitational constant. This equation was discretized on a
205	staggered spatial grid of 2 km by interpolating ETOPO1 1-arcmin bathymetric data
206	(Amante & Eakins 2009). The temporal grid interval was set as 1 s. We assumed that
207	deformation of all unit sources started simultaneously (i.e. an infinite rupture propagation
208	velocity) and that the duration of the unit source deformation was 0 s. Static pressure
209	offsets related to seafloor permanent deformation were considered using the method
210	proposed by Tsushima et al. (2012), which subtracts the pressure change components due
211	to seafloor deformation from the pressure change due to sea-surface fluctuation at OBP
212	station points (a schematic illustration of this procedure is shown in Fig. S1). When
213	calculating Green's function for the time-derivative inversion, we calculated the temporal
214	differentiation of the calculated waveforms. Finally, we applied the same filter as those
215	applied to observed waveforms.
010	In the incoming and a superthing constraint excitate of a super-

In the inversion, we used a smoothing constraint weight of $\alpha = 0.5$ for the conventional inversion and $\beta = 0.01$ for the time-derivative inversion. These values were determined so that the maximal displacement of the tsunami source model would be equivalent to that of seafloor vertical deformation calculated using the finite fault model
of Kubota *et al.* (2017a) (black contours in Fig. 2a), which we considered to be the
benchmark.

222

223 **3.2 Validation of time-derivative inversion**

224First, to determine whether the time-derivative inversion could provide the same 225performance in resolving the tsunami source model as the conventional inversion, we 226analysed the OBP data for the Off-Miyagi earthquake. It was considered that if the OBP 227 data had not been perturbed by non-tsunami components, then the tsunami source models 228 estimated by both inversion methods would be similar. We used a time window from 1 to 20 min after the focal time for the inversion (white background area in Fig. 4c and 4d). 229Fig. 4a and 4b show the tsunami source models estimated using the conventional 230 231inversion and the time-derivative inversion, respectively; the results are seen to be quite 232similar, and both the calculated pressure and time-derivative waveforms agree well with observations (Fig. 4c and 4d). We measured the agreement between the observed and 233234calculated waveforms based on variance reduction (VR) as follows,

235
$$\operatorname{VR} = \left(1 - \frac{\sum_{i} \sum_{k} \left[d_{i}^{obs}(k\Delta t) - d_{i}^{calc}(k\Delta t)\right]^{2}}{\sum_{i} \sum_{k} \left[d_{i}^{obs}(k\Delta t)\right]^{2}}\right) \times 100 \ (\%), \tag{9}$$

where $d_i^{\text{obs}}(k\Delta t)$ and $d_i^{\text{calc}}(k\Delta t)$ are the observed and calculated OBP data at $t = k\Delta t$ for *i*th 236 237 OBP station, respectively (Δt is the sampling interval). We used a time window of 1 to 20 238 min after the focal time to calculate the VR, and obtained relatively high VRs for both 239 pressure and time-derivative waveforms from both the conventional and time-derivative 240inversions (pressure waveform: 99.3% using the conventional inversion and 96.6% using 241the time-derivative inversion; time-derivative waveform: 97.2% using the conventional 242inversion and 97.3% using the time-derivative inversion). 243Both inversion results effectively reproduce the leading tsunami waves observed by 244coastal GPS buoy waveforms from approximately 0–40 min (Fig. 4e). The discrepancy in the latter part of the GPS buoy waveforms (after ~ 40 min) is probably related to the 245246 nonlinearity and a lack of fine-scale bathymetry near the coast (e.g. Satake 1995; Saito et 247al. 2014). Fig. 5a and 5b show comparisons of arrival times and maximal tsunami heights of the leading wave between observed and calculated tsunami waveforms (the arrival time 248249was defined as the time when the amplitude exceeded 1 cm). The arrival times and 250maximal heights of the conventional inversion (blue bars in Fig. 5a and 5b), the time-

251	derivative inversion (red bars) and the observations (black bars) are all very close to one
252	another. Based on these results, we thus concluded that the time-derivative inversion
253	provided a performance as good as the conventional inversion in estimating the tsunami
254	source model, when the OBP data are not perturbed by the non-tsunami components.
255	
256	3.3 Synthetic test using datasets with non-tsunami components
257	We then assessed how the tsunami source model obtained using conventional
258	inversion is perturbed by non-tsunami components (when OBP data contain non-tsunami
259	components), and assessed how use of the time-derivative inversion reduces artefacts due
260	to non-tsunami components. We prepared synthetic datasets by adding artificial pressure
261	offset changes to observed OBP data from the 2011 Off-Miyagi earthquake (i.e., pressure
262	data was artificially perturbed) and assuming pressure changes of 20-50 hPa (Fig. 6,
263	Table 1), which correspond to those due to the rotation of Paroscientific pressure sensors
264	with rotation angles of \sim 30–90° (Chadwick <i>et al.</i> 2006). We assumed the pressure offset
265	change was a ramp function with a finite duration of $T_{\text{offset}} = 10$ s, in consideration of the
266	duration of strong ground shaking (a few tens of seconds). The pressure offset change

267 $p^{\text{offset}}(t)$ is expressed as follows,

268
$$p^{\text{offset}}(t) = \begin{cases} 0 \ (t \le 0) \\ p_{\text{o}} \times \frac{t}{T} \ (0 < t \le T_{\text{offset}}), \\ p_{\text{o}} \ (T_{\text{offset}} < t) \end{cases}$$
(10)

where p_0 is the given pressure offset value (which is summarised in Table 1). After 269 270perturbing the pressure data, they were then processed using the same method as that 271applied to pressure data without the perturbation (hereafter referred to as the original data). 272After data processing, we considered the perturbed pressure data to be the observed data 273and estimated the tsunami source model. All other settings were the same as those 274employed in the original analysis described in the previous section. Note that the first 1min of data were not used for the inversion because of the instability of the pressure data. 275276The inversion results are shown in Fig. 6., where it is evident that the estimation of 277the tsunami source model with the conventional inversion (Fig. 6a) is quite different from 278that estimated using original data (Fig. 4). The pressure waveforms calculated from the 279tsunami source model obtained by the conventional inversion (blue lines in Fig. 6c) 280explain the artificially-perturbed (i.e., observed) pressure waveforms (grey dashed lines 281in Fig. 6c) very well (VR = 99%), but the original pressure waveforms (black lines) are 282not explained at all (VR = -1466%). However, the time-derivative calculated pressure

283	waveforms from the tsunami source model (blue lines in Fig. 6d) do not explain the initial
284	part (< approximately 5 min) of the time-derivative waveforms relating to original
285	pressure waveforms, but the latter part is reasonably explained (VR = -142%). Although
286	the tsunami source model obtained using the time-derivative inversion (Fig. 6b) is similar
287	to that obtained by original data, the results are not exactly the same. The pressure
288	waveforms calculated from this tsunami source model explain the original pressure
289	waveforms reasonably well (red lines in Fig. 6c, $VR = 44.9\%$), and the discrepancy found
290	between the time-derivative waveforms of observational and synthetic data is much
291	smaller than that for the conventional inversion (red lines in Fig. 6d, $VR = 80.1\%$). These
292	results show that the conventional inversion is unable to remove the artefacts due to
293	pressure offset changes, whereas the time-derivative inversion dramatically reduces them.
294	Although the artefact is dramatically reduced by the time-derivative inversion,
295	artefacts due to the offset changes are not completely removed; this is considered likely
296	to be related to the temporal smoothing effect due to the moving average and the low-
297	pass filter (grey dashed lines in Fig. 6d). However, we find that the forecasted arrival time
298	and maximal amplitude at the coastal GPS buoys (blue bars in Fig. 5c and 5d) tend to be

300 bars) when conventional inversion is used, but they are reasonably explained when the 301 time-derivative inversion is used (red bars in Fig. 5c and 5d). 302 We also conducted tests assuming a linear pressure trend at a rate of 0.5 hPa/min 303 (Fig. S2) and smaller pressure offset values (less than 10 hPa) (Figs S3 and S4). All results 304 show that artefacts due to non-tsunami components are reduced well using the time-305 derivative inversion; however, these results are not achieved when using the conventional 306 inversion. The forecast tsunami arrival time and maximal height of the GPS buoys using 307 the synthetic dataset containing linear trends (Fig. S2) are shown in Fig. 5e and 5f, 308 respectively. When using the conventional inversion, the forecast arrival time is 309 approximately 10 min earlier than the observation, whereas it is nearly similar to the 310 observation when the time-derivative inversion is used. These synthetic tests thus 311 demonstrate that the time-derivative inversion effectively reduces the artefacts in the 312tsunami source model due to the non-tsunami components and improves the forecast of 313 the arrival time and maximal height of the coastal tsunami.

early and large (by \sim 5–10 min and \sim 5 cm, respectively) compared to observations (black

314

299

4 APPLICATION TO 2016 OFF-MIE EARTHQUAKE

4.1 Data and analysis

317	In this section, we report results of applying the time-derivative inversion to OBP
318	data from the Mw 5.9 Off-Mie earthquake (Wallace et al. 2016; Asano 2018; Nakano et
319	al. 2018; Takemura et al. 2018). The pressure changes due to the tsunami with a maximal
320	amplitude of ~2 hPa (equivalent to a tsunami of ~2 cm) were clearly observed by the
321	DONET OBPs, and a few hPa of pressure offset-level changes were also observed at
322	DONET1 stations near the epicentre (for example, KME17, KM19, KME20, and
323	KME22) (Fig. 1b). One OBP station nearest the epicentre (KME18) observed a large
324	pressure offset change of approximately 10 hPa, which could be attributed to the tilting
325	or rotation of the sensors in relation to strong ground shaking, as noted by Wallace et al.
326	(2016). Kubo et al. (2018) investigated the site amplification characteristics of DONET1
327	stations and found that station groups KMA and KME (blue and red inverted triangles in
328	Fig. 1a) had large site amplifications due to thick subseafloor sediments. Kubo et al.
329	(2018) and Nakamura et al. (2018) reported peak ground accelerations (PGAs) of ~700
330	gal by DONET strong motion seismometers at KME18 during the 2016 Off-Mie

331	earthquake, and also found that the site amplification observed at KME18 during this
332	event was more than 40 times larger than that expected from the empirical relation. In
333	addition, Kubo et al. (2018) suggested that a nonlinear soil response occurred at DONET1
334	seismometers near the epicentre. These results support the idea that the pressure
335	waveform at KME18 station is perturbed by non-tsunami components due to strong
336	ground shaking. Therefore, when estimating the tsunami source model, data from the
337	OBP at station KME18 were excluded.
338	We processed DONET OBP data using the same method as used with the 2011 Off-
339	Miyagi earthquake (cut-off period of the low-pass filter was 60 s). We estimated the
340	tsunami source model (Fig. 7) by manually selecting OBP stations and time windows
341	used for inversion based on a visual inspection of OBP waveforms (drawn by thick black
342	lines in Fig. S6). As it was suspected that DONET1 OBP waveforms at stations near the
343	epicentre were also perturbed by non-tsunami components (as with station KME18), due
344	to the large peak ground acceleration during the earthquake (Kubo et al. 2018; Nakamura
345	et al., 2018), OBP data from stations KMA03, KMD15, KMD16, KME17, KME19,
346	KME20 and KME22 were also excluded (in addition to KME18) from analysis (grey

347	inverted triangles in Fig. 7). Furthermore, coastal tsunami data were not used to discuss
348	the accuracy of the coastal tsunami forecast, because the observed tsunami height at the
349	coast was very small (less than a few cm). We set the analytical area as $100 \text{ km} \times 100 \text{ km}$.
350	To avoid both over-fitting and over-smoothing during analysis, we used smoothing
351	constraint weights of $\alpha = 0.5$ for the conventional inversion and $\beta = 0.01$ for the time-
352	derivative inversion, which were determined based on the trade-off curve between the
353	smoothing weight and the VR values (Fig. S5).
354	

```
355
       4.2 Results
```

356The estimated tsunami source models obtained from conventional and timederivative inversions were found to be similar to each other (Fig. 7a and 7b, respectively), 357 358 and a pair of uplift and subsidence areas with maximal amplitudes of approximately +3 359cm and -2 cm, respectively, were estimated. To compare the tsunami source model with the seismic analysis, we calculated the seafloor vertical displacement based on the 360 361centroid moment tensor (CMT) solution of the U.S. Geological Survey (USGS). In this 362calculation, we assumed one planar rectangular fault such that its centre coincided with

363	the USGS centroid. The fault length, width, and slip amount were assumed using the
364	scaling law of Wells & Coppersmith (1994), and vertical displacement was calculated
365	using the equations of Okada (1992). We obtained a maximal seafloor vertical
366	deformation displacement of approximately 3 cm (green contours in Fig. 7), which is
367	consistent with that of the tsunami source model. The vertical displacement of the tsunami
368	source model at OBP station KME18 was approximately +1 cm, which is much smaller
369	than that expected from the observed pressure change (~-10 cm). This indicates that the
370	large offset pressure change at station KME18 was neither due to the tsunami nor to
371	seafloor permanent displacement, but due to non-tsunami components. The strike of the
372	hinge-line between the uplift and subsidence is consistent with the strike angle of the
373	finite fault model of Wallace et al. (2016) (215°, yellow rectangles in Fig. 7a and 7b).
374	The vertical displacements expected from our tsunami source model at stations KMA03,
375	KME17 and KME22 are less than 1 cm (Fig. S6a) and are therefore inconsistent with the
376	observed pressure changes (displacements of approximately 1 cm). However, the arrival
377	times, amplitudes and durations of the tsunami are reasonably consistent with those of
378	the observation. In addition, the expected coastal tsunami heights of the conventional and

379 time-derivative inversions are similar (e.g. approximately 1.5 cm at station 301) (Fig.380 S6e).

381 To investigate the discrepancies of pressure offset changes at stations KMA03, 382 KME17 and KME22 between calculations and observations, we conducted an inversion 383 that included OBP data obtained near the epicentre (KME18 was excluded from analysis) 384 (Figs S7 and S8) and compared the result with the tsunami source model excluding the 385 stations near the epicentre (Fig. 7, hereafter referred to as the reference tsunami source 386 model). We found that the tsunami source model obtained using the time-derivative 387 inversion (Fig. S7b) was similar to the reference tsunami source model, whereas the 388 tsunami source model using the conventional inversion had a wider subsidence area extending around stations KMA03, KME17 and KME22 (Fig. S7a). Since the tsunami 389 390 source models using the conventional and time-derivative inversions should resemble one 391 another when OBP data are not perturbed by non-tsunami components (as shown in the 392 previous section), the discrepancy of the tsunami source models suggests that OBP data from stations KMA03, KME17 and KME22 are also perturbed by non-tsunami 393 394 components, although the amplitudes are very small (approximately 1 cm).

395	Tsuji et al. (2017) interpreted the rupture process of this earthquake as being related
396	to an ancient splay fault system in an accretionary prism (Tsuji et al. 2014), based on the
397	comparison of the strike angles between of the ancient splay fault and of the finite fault
398	model of Wallace et al. (2016) (yellow rectangle in Fig. 7). However, as the tsunami
399	source model estimated using the conventional inversion strongly depends on non-
400	tsunami components, it is difficult to discuss the rupture process of the Off-Mie
401	earthquake, as previously discussed by Tsuji et al. (2014), whereas we can discuss it by
402	using the time-derivative inversion, which can reduce the artefacts of the tsunami source
403	model. In addition, conducting a comparison between tsunami source models from both
404	inversions is effective for distinguishing whether or not near-source OBPs contain the
405	non-tsunami component. The time-derivative inversion is thus useful for discussing the
406	detailed rupture processes of tsunami-associated earthquakes, which is not easily
407	achieved using the conventional inversion alone.
408	For a real-time tsunami forecast, we conducted a tsunami source inversion using
409	only the early part of DONET OBP data (a time window from 1 to 5 min following the

focal time) (Fig. 8). As there was no time to inspect OBP data to exclude waveforms

411	containing non-tsunami components from the tsunami source inversion, we also used
412	OBP data from station KME18, which contained a large apparent pressure offset change.
413	When using the conventional inversion, a large amount of subsidence (approximately -
414	10 cm) was estimated around station KME18 (Fig. 8a) and results from the tsunami
415	source model were found to be quite different from those of the reference tsunami source
416	model (Fig. 7). However, results from the tsunami source model using the time-derivative
417	inversion (Fig. 8b) were very similar to those of the reference tsunami source model,
418	which suggests that the time-derivative inversion effectively reduces non-tsunami
419	components, even when providing a real-time analysis. The latter part of OBP waveforms
420	calculated from the tsunami source model obtained by conventional inversion (blue lines
421	in Fig. S8) do not match the observations at all, whereas that using the time-derivative
422	inversion provide a reasonable fit (red lines in Fig. S9). Although the expected coastal
423	tsunami height is only a few cm, which is less than the noise level (Fig. S9e), the expected
424	maximal amplitudes at coastal stations using the conventional inversion (blue lines in Fig.
425	S9e) are nearly twice as large as the forecast using the time-derivative inversion (red
426	lines).

428 **5 DISCUSSION**

429To provide an accurate and reliable tsunami forecast, it is important to quickly 430 obtain highly accurate information from the tsunami source model. We thus investigated 431 the relationship between the tsunami source inversion and the end time of the inversion 432time window using OBP data associated with the 2011 Off-Miyagi earthquake (Fig. 9). 433 Changing the end time of the inversion time window from 2 min to 20 min after the focal 434 time (the start time of the time window was fixed to 1 min), we conducted a tsunami 435source inversion. The other settings were the same as those of the original analysis. 436 To evaluate the temporal stability of the inversion, we investigated the temporal evolution of the VR for the observed and calculated waveforms using a time window of 437 438 1-20 min (Fig. 9a). We also calculated the temporal evolution of the total volume of 439 displaced seawater (V) (Fig. 9b), which is defined as follows,

440 $V = \sum_{i} \sum_{j} |u_{ij}| \times \Delta x \times \Delta y, \qquad (11)$

441 where u_{ij} is the displacement of the tsunami source at the (i, j)th grid in the *x* and *y* 442 directions (Δx and Δy are the horizontal grid intervals of 2 km). The temporal evolution

427

443	of the VR for pressure waveforms and total volumes was found to be quite similar for the
444	two inversion methods; however, the temporal evolution of the total volume was stable
445	after 10 min when the time-derivative inversion was used (Fig. 9b). These results suggest
446	that the time-derivative inversion is not necessarily better than the conventional inversion
447	with respect to convergence time, but it is slightly better in terms of stability.
448	There would be another approach to simultaneously estimate the tsunami source
449	model and the non-tsunami component at each OBP station from pressure waveforms.
450	The advantage of such approach would be that the first few minutes of data following the
451	occurrence of the earthquake could be used to estimate the tsunami source model,
452	although our approach did not use. However, such an approach should have a trade-off
453	between the estimated seafloor displacement and the estimated non-tsunami components
454	(an example of this possible trade-off is shown in Fig. S10). If a shorter time window
455	were used that did not include the peak amplitude of the tsunami, it would be possible
456	that the gradual pressure change associated with the tsunami is wrongly estimated as a
457	linear trend. This would be a disadvantage to provide fast (< \sim 10 min from the
458	earthquake) and reliable tsunami forecasts. Our approach using time-derivative

waveforms is advantageous in avoiding such trade-off, because only the displacement of 459460 the unit tsunami source elements are the unknown parameters.

461	In a practical tsunami forecast, we also need to consider the artefacts due to high-
462	frequency pressure changes associated with seismic and hydroacoustic waves (e.g.,
463	Matsumoto et al. 2012; Saito 2013; 2017; An et al. 2017; Kubota et al. 2017b); although
464	these effects are not included in the analysis. As the dominant period of hydroacoustic
465	waves is less than ~ 10 s (e.g., Matsumoto <i>et al.</i> 2012; Saito 2013; 2017), whereas tsunami
466	waves have much longer dominant periods (> \sim 100 s), hydroacoustic components can be
467	removed from OBP waveforms by applying a lowpass filter with an appropriate cut-off
468	period. In addition, previous studies have also reported dynamic pressure changes caused
469	by the reaction force from the seawater to the seafloor (in response to the seafloor
470	accelerating the seawater during seafloor displacement) (a dominant period of $< \sim 50$ s),
471	(e.g., Saito 2017; An et al. 2017; Kubota et al. 2017b). However, although it appears that
472	this component may affect the inversion, Saito & Tsushima (2016) found that the effects
473	are only minimal, because such short-period pressure components cannot be expressed
474	by the superposition of Green's function of the tsunami (which has much longer dominant

475	periods (> \sim 100 s)). We also note that in the practical tsunami forecast the consideration
476	of the additional time to process OBP data is required. But it would not be a major concern
477	with respect to the proficiency of contemporary hardware, and will be even less of a
478	concern when using high-performance computers developed in the future.
479	In the investigation of the temporal evolution of inversion stability, we used OBP
480	data that were not perturbed by non-tsunami components. Our results showed similar
481	temporal evolutions for both the conventional and time-derivative inversions. In the
482	synthetic test we assumed that the pressure data were perturbed by non-tsunami
483	components and found that the tsunami source models for conventional and time-
484	derivative inversions were very different. Based on these results, it would be very useful
485	to compare tsunami source models using conventional and the time-derivative inversions
486	to enable a real-time validation of pressure data quality and to distinguish whether or not
487	pressure data contain non-tsunami components in real time.

488

489 6 CONCLUSIONS

490 We propose a new method using the time-derivative waveforms of the pressure

491	time series (rather than the raw pressure time series) to estimate the spatial distribution of
492	initial sea-surface height (the tsunami source model) using OBP data, with the aim of
493	reducing artefacts due to non-tsunami pressure components. Using OBP data associated
494	with the Off-Miyagi earthquake that occurred on 9 March 2011 (Mw 7.2), the proposed
495	method was found to work as well as the conventional method. We also conducted a
496	performance test using a synthetic dataset and artificially perturbing OBP data. The
497	tsunami source model obtained using the conventional inversion approach provided large
498	seafloor displacements around OBPs due to artificial non-tsunami components, and the
499	forecast coastal tsunami arrived earlier and had a larger amplitude than the observation.
500	However, when time-derivative waveforms were used for the inversion, artefacts due to
501	non-tsunami components were dramatically suppressed, and the forecast coastal tsunami
502	waveforms reasonably matched those of the observation.
503	We also applied the new method to OBP data associated with the 2016 Off-Mie
504	earthquake (Mw 5.9), and the estimated tsunami source model was found to be consistent
505	with the USGS CMT solution. The tsunami source model also suggested that OBPs near
506	the epicentre contained non-tsunami components (with an amplitude of approximately 1-

507	cm) because of sensor tilting or rotation. We then analysed OBP data based on quasi-real-
508	time analysis, and the estimated tsunami source model obtained using the conventional
509	method provided very different results from those obtained using post analysis. However,
510	the newly developed tsunami source model provided results that were quite similar to
511	those obtained by careful post analysis, even when including OBP data perturbed by non-
512	tsunami components.
513	We assessed the time window used for inversion to discuss the temporal stability
514	of the inversion and found that the tsunami source model obtained using the time-
515	derivative inversion was stable after inversion convergence (~ 10 min from the focal time),
516	whereas the total volume of displaced seawater was unstable when the conventional
517	method was used. For practical tsunami forecasting, it would be useful to compare
518	tsunami source models using both inversion methods to validate real-time OBP data
519	quality, as it is considered that the methods would provide identical results if OBP data
520	are not perturbed by non-tsunami components and the results will be different if OBP
521	data are perturbed.
522	

523 Acknowledgements

524The authors thank Editor Frederik Simons and Reviewers Eric Geist and Sebastien 525Allgever for their useful and helpful comments, which improved the manuscript. This 526study was supported by the Council for Science, Technology and Innovation (CSTI) 527 through the Cross-Ministerial Strategic Innovation Promotion Program (SIP) entitled 528"Enhancement of societal resiliency against natural disasters". This study was also 529supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP20244070 and JP26000002 and the research project "Research concerning 530531Interaction between the Tokai, Tonankai, and Nankai Earthquakes" of the Ministry of 532Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors would like to thank Tatsuhiko Saito, Hiroaki Tsushima, Shunsuke Takemura, and Hisahiko 533534Kubo for the fruitful discussions. The authors would further like to thank the ERI and 535PARI for providing tsunami data, and Global CMT, USGS and F-net for the CMT solution data. The figures in this paper were prepared using Generic Mapping Tools 536 537 (GMT) (Wessel and Smith, 1998). The authors used the English language editing service 538Editage (www.editage.jp).

539 References

- 540 Amante, C. & Eakins, B.W., 2009. ETOPO1 1 arc-minute global relief model: Procedures,
- 541 data sources and analysis, in NOAA Tech. Memo. NESDIS NGDC-24, 19 pp., Natl.
- 542 Geophys. Data Center, NOAA, Boulder, Colo.
- 543 An, C., Cai, C., Zheng, Y., Meng, L., & Liu, P., 2017. Theoretical solution and
- applications of ocean bottom pressure induced by seismic seafloor motion, *Geophys.*
- 545 *Res. Lett.*, 44, 10272–10281.
- 546 Asano, K., 2018. Source Modeling of an Mw 5.9 Earthquake in the Nankai Trough,
- 547 Southwest Japan, Using Offshore and Onshore Strong-Motion Waveform Records,
- 548 Bull. Seismol. Soc. Am., 108, 1231–1239.
- Baba, T., Cummins, P.R., Hori, T., 2005. Compound fault rupture during the 2004 off the
- 550 Kii Peninsula earthquake (M 7.4) inferred from highly resolved coseismic sea-
- 551 surface deformation. *Earth Planets Space*, 57, 167–172.
- 552 Baba, T., Takahashi, N. & Kaneda, Y., 2014. Near-field tsunami amplification factors in
- the Kii Peninsula, Japan for Dense Oceanfloor Network for Earthquakes and
- 554 Tsunamis (DONET), Mar. Geophys. Res., 35, 319–325.

555	Chadwick, W.W. Jr., Nooner, S.L., Zumberge, M.A., Embley, R.W. & Fox, C.G., 2006.
556	Vertical deformation monitoring at Axial Seamount since its 1998 eruption using
557	deep-sea pressure sensors, J. Volcanol. Geotherm. Res., 150, 313-327.
558	Eble, M.C. & Gonzalez, F.I., 1991. Deep-ocean bottom pressure measurements in the
559	Northeast Pacific, J. Atmos. Oceanic. Technol., 8, 221–233.
560	Ekström, G., Nettles, M. & Dziewoński, A.M., 2012. The global CMT project 2004-
561	2010: centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter.,
562	200–201, 1–9.
563	González, F.I., Bernard, E.N., Meinig, C., Eble, M.C., Mofjeld, H.O. & Stalin, S., 2005.
564	The NTHMP tsunameter network. Nat. Hazards, 35, 25–39.
565	Gusman, A.R., Tanioka, Y., Macinnes, B.T. & Tsushima, H., 2014. A methodology for
566	near-field tsunami inundation forecasting: Application to the 2011 Tohoku tsunami,
567	J. Geophys. Res.: Solid Earth, 119, 8186–8206.
568	Hino, R., Tanioka, Y., Kanazawa, T., Sakai, S., Nishino, M. & Suyehiro, K., 2001. Micro-
569	tsunami from a local interplate earthquake detected by cabled offshore tsunami
570	observation in northeast Japan, Geophys. Res. Lett., 28, 3533-3536.
571	Hino, R., Inazu, D., Ohta, Y., Ito, Y., Suzuki, S., Iinuma, T., Osada, Y., Kido, M.,
-----	---
572	Fujimoto, H. & Kaneda, Y., 2014. Was the 2011 Tohoku-Oki earthquake preceded
573	by aseismic preslip? Examination of seafloor vertical deformation data near the
574	epicenter, Mar. Geophys. Res., 35, 181-190.
575	Inazu, D. & Hino, R., 2011. Temperature correction and usefulness of ocean bottom
576	pressure data from cabled seafloor observatories around Japan for analyses of
577	tsunamis, ocean tides, and low-frequency geophysical phenomena, Earth Planets
578	<i>Space</i> , 63, 1133–1149.
579	Kanazawa, T. & Hasegawa, A., 1997. Ocean-bottom observatory for earthquakes and
580	tsunami off Sanriku, north-east Japan using submarine cable, Presented at
581	International Workshop on Scientific Use of Submarine Cables, Okinawa, Japan.
582	Kanazawa, T., Uehira, K., Mochizuki, M., Shinbo, T., Fujimoto, H., Noguchi, S., Kunugi,
583	T., Shiomi, K., Aoi, S., Matsumoto, T., Sekiguchi, S. & Okada, Y., 2016. S-net
584	project, cabled observation network for earthquakes and tsunamis, in Abstract
585	WE2B-3, Presented at SubOptic 2016, Dubai, April 18-21.
586	Kaneda, Y., Kawaguchi, K., Araki, E., Matsumoto, H., Nakamura, T., Kamiya, S.,

587	Ariyoshi, K., Hori, T., Baba, T. & Takahashi, N., 2015. Development and
588	application of an advanced ocean floor network system for megathrust earthquakes
589	and tsunamis, in Seafloor Observatories, pp. 643–662, eds. Favali P. et al., Springer,
590	Berlin.
591	Karrer H. E. & J. Leach, 1969. A quartz resonator pressure transducer, IEEE Trans. Ind.
592	Electron. Control Instrum., 16, 44–50.
593	Kawaguchi, K., Kaneko, S., Nishida, T. & Komine, T., 2015. Construction of the DONET
594	real-time seafloor observatory for earthquakes and tsunami monitoring, in Seafloor
595	Observatories, pp. 211–228, eds. Favali P. et al., Springer, Berlin.
596	Kato, T., Terada, Y., Ito, K., Hattori, R., Abe, T., Miyake, T., Koshimura, S. & Nagai, T.,
597	2005. Tsunami due to the 5 September 2004 off the Kii Peninsula Earthquake, Japan,
598	recorded by a new GPS buoy, Earth Planets Space, 57, 297–301.
599	Kawai, H., Satoh, M., Kawaguchi, K. & Seki, K., 2012. The 2011 off the Pacific Coast
600	of Tohoku Earthquake Tsunami observed by the GPS buoys, seabed wave gauges,
601	and coastal tide gauges of NOWPHAS on the Japanese Coast. Presented at the 22nd
602	International Offshore and Polar Engineering Conference, Rhodes, Greece, June

603 17–22.

604	Kubo, A.,	, Fukuyama,	Е.,	Kawai,	Н.,	&	Nonomura,	К.,	2002.	NIED	seismic	moment
-----	-----------	-------------	-----	--------	-----	---	-----------	-----	-------	------	---------	--------

- 605 tensor catalogue for regional earthquakes around Japan: quality test and application,
- 606 *Tectonophys.*, 356, 23–48.
- 607 Kubo, H., Nakamura, T., Suzuki, W., Kimura, T., Kunugi, T., Takahashi, N., & Aoi, S.,
- 608 2018. Site amplification characteristics at Nankai seafloor obsearvation network,
- 609 DONET1, Japan, evaluated using spectral inversion. Bull. Seismol. Soc. Am., ,
- 610 108(3A), 1210-1218.
- 611 Kubota, T., Hino, R., Inazu, D., Ito, Y. & Iinuma, T., 2015. Complicated rupture process
- of the Mw 7.0 intraslab strike-slip earthquake in the Tohoku region on 10 July 2011
- 613 revealed by near-field pressure records, *Geophys. Res. Lett.*, 42, 9733–9739.
- 614 Kubota, T., Hino, R., Inazu, D., Ito, Y., Iinuma, T., Ohta, Y., Suzuki, S. & Suzuki, K.,
- 615 2017a. Coseismic slip model of offshore moderate interplate earthquakes on March
- 616 9, 2011 in Tohoku using tsunami waveforms, *Earth. Planet. Sci. Lett.*, 458, 241–
- 617 251.
- 618 Kubota, T., Saito, T., Suzuki, W. & Hino, R., 2017b. Estimation of seismic centroid

- 619 moment tensor using ocean bottom pressure gauges as seismometers, *Geophys. Res.*
- 620 *Lett.*, 44, 10907–10915.
- 621 Maeda, T., Obara, K., Shinohara, M., Kanazawa, T. & Uehira, K., 2015. Successive
- estimation of a tsunami wavefield without earthquake source data: A data
 assimilation approach toward real-time tsunami forecasting, *Geophys. Res. Lett.*,
- 624 42, 7923-7932.
- 625 Matsumoto, K., Takanezawa & T., Ooe, M., 2000. Ocean tide models developed by
- 626 assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a
- 627 global model and a regional model around Japan, J. Oceanogr., 56, 567–581.
- 628 Matsumoto, H., Inoue, S., & Ohmachi, T., 2012. Dynamic response of bottom water
- 629 pressure due to the 2011 Tohoku earthquake, J. Disaster Res., 7, 4698–475.
- 630 Nakamura, T., Takahashi, N., & Suzuki, K., 2018. Ocean-bottom strong-motion
- 631 observations in the Nankai Trough by the DONET real-time monitoring system.
- 632 Mar. Tech. Soc. J., 52, 100–108.
- 633 Nakano, M., Hyodo, M., Nakanishi, A., Yamashita, M., Hori, T., Kamiya, S., Suzuki, K.,
- Tonegawa, T., Kodaira, S., Takahashi, N., Kaneda, Y., 2018. The 2016 Mw 5.9

- earthquake off the southeastern coast of Mie Prefecture as an indicator ofpreparatory processes of the next Nankai Trough megathrust earthquake, *Prog.*
- 637 *Earth Planet. Sci.*, 5, 30.
- 638 Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space. *Bull.*639 *Seismol. Soc. Am.*, 82, 1018–1040.
- 640 Polster, A., Fabian, M. & Villinger, H., 2009. Effective resolution and drift of
- 641 Paroscientific pressure sensors derived from long-term seafloor measurements.
- 642 *Geochem, Geophys, Geosystems.*, 10(8), Q08008.
- 643 Saito, M., 1978. An automatic design algorithm for band selective recursive digital filters,
- 644 *Butsuri Tanko*, 31, 112–135. (in Japanese)
- 645 Saito, T., 2013. Dynamic tsunami generation due to sea-bottom deformation: Analytical
- representation based on linear potential theory. *Earh Planets Space*, 65, 1411–1423.
- 647 Saito, T., 2017. Tsunami generation: validity and limitations of conventional theories.
- 648 Geophys. J. Int., 210, 1888–1900.
- 649 Saito, T. & Tsushima, H., 2016. Synthesizing ocean bottom pressure records including
- 650 seismic wave and tsunami contributions: Toward realistic tests of monitoring

- 651 systems, J. Geophys. Res.: Solid Earth, 121, 8175–8195.
- 652 Saito, T., Inazu, D., Miyoshi, T. & Hino, R., 2014. Dispersion and nonlinear effects in
- the 2011 Tohoku-Oki earthquake tsunami, J. Geophys. Res., 119, 5160–5180.
- 654 Satake, K., 1989. Inversion of tsunami waveforms for the estimation of heterogeneous
- fault motion of large submarine earthquakes: The 1968 Tokachi-oki and 1983 Japan
- 656 Sea earthquakes, J. Geophys. Res., 94, 5627–5636.
- 657 Satake, K., 1995. Linear and nonlinear computations of the 1992 Nicaragua earthquake
- tsunami, Pure Appl. Geophys., 144, 455–470.
- 659 Takagawa, T. & Tomita, T., 2014. Simultaneous inference of credible interval of inverted
- tsunami source and observation error by a hierarchical Bayes model, J. Japan Soc.
- 661 *Civil Eng. Ser. B2 (Coastal Engineering)*, 70(2), I_196–I_200. (in Japanese with
- 662 English abstract)
- 663 Takahashi, M., 1981. Telemetry bottom pressure observation system at a depth of 2,200
- 664 meter. J. Phys. Earth, 29, 77–88.
- 665 Takemura, S., Kimura, T., Saito, T., Kubo, H. & Shiomi, K., 2018. Moment tensor
- 666 inversion of the 2016 southeast offshore Mie earthquake in the Tonankai region

667	using a three-dimensional velocity structure model: effects of the accretionary
668	prism and subducting oceanic plate, Earth Planets Space, 70, 50.
669	Tanioka, Y., 2018. Tsunami simulation method assimilating ocean bottom pressure data
670	near a tsunami source region, Pure Appl. Geophys., 175, 721-729.
671	Tatsumi, D., Calder, C.A. & Tomita, T., 2014. Bayesian near-field tsunami forecasting
672	with uncertainty estimates, J. Geophys. Res.: Oceans, 119, 2201–2211.
673	Titov, V.V., González, F.I., Bernard, E.N., Eble, M.C., Mofjeld, H.O., Newman, J.C. &
674	Venturato, A.J., 2005. Real-time tsunami forecasting: Challenges and solutions,
675	Nat. Hazards, 35, 35–41.
676	Tsuji, T., Kamei, R. & Prat, G., 2014. Pore pressure distribution of a mega-splay fault
677	system in the Nankai Trough subduction zone: insight into up-dip extent of the
678	seismogenic zone, Earth. Planet. Sci. Lett., 396, 165-178.
679	Tsuji, T., Minato, S., Kamei, R., Tsuru, T. & Kimura, G., 2017. 3D geometry of a plate
680	boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction
681	zone, Japan, Earth. Planet. Sci. Lett., 478, 234–244.

682 Tsushima, H., Hino, R., Fujimoto, H., Tanioka, Y. & Imamura, F., 2009. Near-field

- tsunami forecasting from cabled ocean bottom pressure data, *J. Geophys. Res.*, 114,
 B06309.
- 685 Tsushima, H., Hino, R., Tanioka, Y., Imamura, F. & Fujimoto, H., 2012. Tsunami
- 686 waveform inversion incorporating permanent seafloor deformation and its 687 application to tsunami forecasting, *J. Geophys. Res.*, 117, B03311.
- 688 Uehira, K., Kanazawa, T., Mochizuki, M., Fujimoto, H., Noguchi, S., Shinbo, T., Shiomi,
- 689 K., Kunugi, T., Aoi, S., Matsumoto, T., Sekiguchi, S., Okada, Y., Shinohara, M. &
- 690 Yamada, T., 2016. Outline of Seafloor Observation Network for Earthquakes and
- 691 Tsunamis along the Japan Trench (S-net), in *Abstract EGU2016-13832*, *Presented*
- 692 *at EGU General Assembly 2016*, Vienna, Austria, April 17–22.
- 693 Wallace, L.M., Araki, E., Saffer, D., Wang, X., Roesner, A., Kopf, A., Nakanishi, A.,
- 694 Power, W., Kobayashi, R., Kinoshita, C., Toczko, S., Kimura, T., Machida, T. &
- 695 Carr, S., 2016. Near-field observations of an offshore Mw 6.0 earthquake from an
- 696 integrated seafloor and subseafloor monitoring network at the Nankai Trough,
- 697 southwest Japan, J. Geophys. Res.: Solid Earth, 121, 8338–8351.
- 698 Watts, D.R. & Kontoyiannis, H., 1990. Deep-Ocean Bottom Pressure Measurement: Drift

- Removal and Performance, J. Atmos. Ocean. Technol., 7, 296–306.
- 700 Wells, D.L. & Coppersmith, K.J., 1994. New Empirical Relationships among Magnitude,
- 701 Rupture Length, Rupture Width, Rupture Area, and Surface Displacement, Bull.
- 702 Seismol. Soc. Am., 84, 974–1002.
- 703 Wessel, P. & Smith, W.H.F., 1998. New, improved version of generic mapping tools
- released, *Eos Trans. AGU*, 79(47), 579.
- 705 Yamamoto, N., Aoi, S., Hirata, K., Suzuki, W., Kunugi, T. & Nakamura, H., 2016a.
- Multi-index method using offshore ocean-bottom pressure data for real-time
 tsunami forecast, *Earth Planets Space*, 68, 128.
- 708 Yamamoto, N., Hirata, K., Aoi, S., Suzuki, W., Nakamura, H., Kunugi, T., 2016b. Rapid
- estimation of tsunami source centroid location using a dense offshore observation
- 710 network, Geophys. Res. Lett., 43, 4263–4269.

Case	Original	Large offset	Trend	Small offset	Offset at P06
Unit	hPa	hPa	hPa/min	hPa	hPa
	Fig. 4	Fig. 6	Fig. S2	Fig. S3	Fig. S4
GJT3	0	+30	+0.5	+10	0
P02	0	-30	+0.5	+5	0
P03	0	+20	+0.5	+5	0
P06	0	-40	-0.5	+5	-30
P07	0	-20	-0.5	+5	0
P08	0	+50	-0.5	+10	0
P09	0	-50	-0.5	+15	0
TM1	0	0	+0.5	0	0
TM2	0	0	-0.5	0	0

Table 1. Perturbations to OBP data in synthetic test

715	Figure 1. (a) Location map of the 2016 Off-Mie Earthquake (Mw 5.9). Stars denote
716	centroids of CMT solutions from Global CMT (Ekström et al. 2012), F-net (Kubo et al.
717	2002) and USGS. DONET1 and DONET2 OBP stations are denoted by inverted and
718	regular triangles, respectively. OBP symbol colours denote station groups. Each OBP
719	sensor within a group is connected to the same science node, which is a device with the
720	function of a hub that connects the sensors to the main cable system (Kaneda et al. 2015;
721	Kawaguchi et al. 2015). GPS buoys and coastal wave gauges are shown by yellow squares
722	and diamonds, respectively. Pressure time series observed by (b) DONET1 and (c)
723	DONET2 OBPs.

731 series. (c) Time-derivative waveforms of OBP records.

733 Figure 3. Schematic image of seafloor pressure change associated with earthquakes and

734 non-tsunami components.

737	Figure 4. Inversion results for the 2011 Off-Miyagi earthquake using OBP data without
738	adding artificial perturbation (original data). Tsunami source models obtained using (a)
739	conventional inversion and (b) time-derivative inversion. Uplifted and subsided areas are
740	shown in red and blue, respectively; green contour lines are the seafloor vertical
741	displacement expected using the fault model of Kubota et al. (2017a) with 10-cm intervals.
742	Comparisons of (c) pressure and (d) time-derivative waveforms between observed
743	waveforms (black) and calculated waveforms. Waveforms calculated from source models
744	obtained using conventional and time-derivative inversions are shown in blue and red,
745	respectively. A time window from 1 to 20 min (white background area) was used in the
746	inversion. (e) Comparison of coastal GPS buoy waveforms between observed (black) and
747	forecast (blue and red) waveforms.

Figure 5. Comparison of arrival times of first waves and maximal amplitudes between observation (black) and forecasts from conventional inversion (blue) and time-derivative inversion (red), using (a, b) original pressure data (Fig. 4), (c, d) synthetic pressure data with pressure offset changes (Fig. 6) and (e, f) synthetic pressure data with a long-term

753 trend (Fig. S2).

756	Figure 6. Inversion results of the 2011 Off-Miyagi earthquake using synthetic OBP data
757	containing artificial pressure offset changes. Tsunami source model from OBP data
758	without artificial perturbation using conventional inversion (Fig. 4a) shown by green
759	contours; grey dashed lines in (c) and (d) are synthetic data used in analysis; other
760	explanations are same as those in Fig. 4.

Figure 7. Tsunami source model of the 2016 Off-Mie earthquake obtained using (a) conventional and (b) time-derivative inversions, without OBP data near the epicentre (OBPs not used in analysis are shown in grey). Colours of OBPs used in the inversion are the same as Fig. 1. The interval of the contour lines is 0.5 cm. Green contours denote seafloor vertical displacement expected from the USGS CMT solution; yellow rectangles denote finite fault model of Wallace *et al.* (2016).

769 Figure 8. Tsunami source model of the 2016 Off-Mie earthquake obtained using (a)

conventional and (b) time-derivative inversions with all the OBPs and a time window of

1 to 5 min. Green contours denote seafloor vertical displacement obtained in post analysis

(Fig. 7a); other explanations are same as those in Fig. 7.

Figure 9. (a) Temporal evolution of VR between observed and calculated waveforms using time window from 1 to 20 min. VR of pressure waveform obtained using conventional (blue) and time-derivative (red) inversions, and time-derivative waveform obtained using conventional (light blue) and time-derivative (red) inversions. (b) Temporal evolution of volumes of displaced seawater. Temporal evolution of total displacement (blue and red), uplifted region (light blue and orange) and subsided region (purple and pink) are shown.

782 Supplementary materials

783

Figure S1. Schematic illustration used to calculate Green's function for conventional and

the time-derivative inversions.

Figure S2. Inversion results of the 2011 Off-Miyagi earthquake using synthetic OBP data

788 containing artificial long-term trend; other explanations are same as those in Fig. 6.

- 790 Figure S3. Inversion results for the 2011 Off-Miyagi earthquake using synthetic OBP
- data containing small (5–10 hPa) artificial pressure offset changes; other explanations are
- same as those in Fig. 6.

Figure S4. Inversion results for the 2011 Off-Miyagi earthquake using synthetic OBP

data containing large (30 hPa) artificial pressure offset change at station P06; other

- explanations are same as those in Fig. 6.
- 797

799 Figure S5. Trade-off curve between smoothing weight and VR, for (a) conventional

800 inversion and (b) time-derivative inversion when analysing the Off-Mie earthquake. Grey

801 lines denote weight of smoothing constraint adopted in this study.

813	Figure S7. Tsunami source model of the 2016 Off-Mie earthquake obtained using (a)
814	conventional and (b) time-derivative inversions without OBP data at KME18. Green
815	contours denote tsunami source distribution obtained from analysis using OBP data apart
816	from epicentre shown in Fig. 7a. Other explanations are the same as those in Fig. 7.
817	

819	Figure S8. Comparisons of waveforms for the 2016 Off-Mie earthquake between
820	observed tsunami waveforms (black) and calculated waveforms calculated from tsunami
821	source model with conventional inversion (blue) and time-derivative inversion (red),
822	obtained from OBP data except for KME18 (Fig. S7); other explanations are the same as
823	those in Fig. S6.

- 834 estimation of tsunami and linear trend; black line denotes observed tsunami waveform. It
- 835 is possible to estimate the tsunami as a linear trend (blue dashed line), if tsunami data
- 836 with a short time window are employed (denoted by red arrow).