1.Name:

Eiichi FUKUYAMA (Dr. Sci.)

2.Affiliation:
Director,
Earthquake and Tsunami Disaster Prevention Research Division,
National Research Institute for Earth Science and Disaster Resilience
3-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
3.Research Fields:

Seismology, Earthquake Source Mechanics

4.Publications

(1) Peer-Reviewed Papers

    1. Fukuyama, E., F. Yamashita and K. Mizoguchi (2017), Voids and rock friction at subseismic slip velocity, Pure Appl. Geophys., doi:10.1007/s00024-017-1728-2 (in press).
    2. Kaneko Y., E. Fukuyama, and I. J. Hamling (2017), Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 Mw7.8 Kaikōura earthquake, Geophys. Res. Lett., 44, doi:10.1002/2017GL073681.
    3. Urata, Y., K. Yoshida, E. Fukuyama and H. Kubo (2017), 3-D dynamic rupture simulation of hte 2016 Kumamoto, Japan, earthquake, Earth Planets Space, 69, 150, doi:10.1186/s40623-017-0733-0.
    4. Urata, Y., F. Yamashita, E. Fukuyama, H. Noda, and K. Mizoguchi (2017), Apparent dependence of rate- and state-dependent friction parameters on loading velocity and cumulative displacement inferred from large-scale biaxial friction experiments, Pure and Applied Geophys., 174, 2217-2237, doi:10.1007/s00024-016-1422-9.
    5. Fukuyama, E. and W. Suzuki (2016), Near-fault deformation and Dc" during the 2016 Mw7.1 Kumamoto earthquake, Earth Planets Space, 68, 194, doi:10.1186/s40623-016-0570-6.
    6. Fukuyama, E., S. Xu, F. Yamashita, and K. Mizoguchi (2016), Cohesive zone length of metagabbro at supershear rupture velocity, J. Seismology, 20, 1027-1215, doi:10.1007/s10950-016-9588-2.
    7. Xu, S., E. Fukuyama, H. Yue, and J.-P. Ampuero (2016), Simple crack models explain deformation induced by subduction zone megathrust earthquakes, Bull. Seismol. Soc. Am., 106, 2275-2289, doi:10.1785/0120160079.
    8. Yoshida, K., N. Pulido, and E. Fukuyama (2016), Unusual stress rotations within the Philippines possibly caused by slip heterogeneity along the Philippine fault, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012275.
    9. Kim, S., T. Saito, E. Fukuyama and T.-S. Kang (2016), The Nankai Trough earthquake tsunamis in Korea: numerical studies of the 1707 Hoei earthquake and physics-based scenarios, Earth Planets Space, 68, 64, doi:10.1186/s40623-016-0438-9.
    10. Inazu, D., N. Pulido,E. Fukuyama, T. Saito, J. Senda, and H. Kumagai (2016), Near-field tsunami forecast system based on near real-time seismic moment tensor estimation in the regions of Indonesia, the Philippines, and Chile, Earth Planets Space, 68, 73, doi:10.1186/s40623-016-0445-x.
    11. Yoshida, K., Hasegawa, A., Saito, T., Asano, Y., Tanaka, S., Sawasaki, K., Urata, Y., and Fukuyama, E. (2016), Stress rotations due to the M6.5 foreshock and M7.3 main shock in the 2016 Kumamoto, SW Japan, earthquake sequence, Geophys. Res. Lett., 43, 10097-10104.
    12. Fukuyama, E. (2015), Dynamic faulting on a conjugate fault system detected by near-fault tilt measurements, Earth Planets Space, 67, 38, doi:10.1186/s40623-015-0207-1.
    13. Fukuyama, E. and Hok, S. (2015), Dynamic overshoot near trench caused by large asperity break at depth, Pure and Applied Geophys., 172, 2157-2165, doi:10.1007/s00024-013-0745-z.
    14. Yamashita, F., Fukuyama, E., Mizoguchi, K., Takizawa, S., Xu, S., and Kawakata, H., (2015), Scale dependence of rock friction at high work rate, Nature, 254, 257-528.
    15. Xu, S., Fukuyama, E., Ben-Zion, Y. and Ampuero, J.-P., (2015), Dynamic rupture activation of backthrust fault branching, Tectonophys., 644-645, 161-183.
    16. Togo, T., Shimamoto, T., Yamashita, F., Fukuyama, E., Mizoguchi, and K., Urata, Y., (2015), Stick–slip behavior of Indian gabbro as studied using a NIED large-scale biaxial friction apparatus, Earthquake Science, 28, 97-118.
    17. Fukuyama, E., Mizoguchi, K., Yamashita, F, Togo, T., Kawakata, H., Yoshimistu N., Shimamoto, T., Mikoshiba, T., Sato, M., Minowa, C., Kanezawa, T., Kurokawa H., and Sato T., (2014), Large-scale biaxial friction experiments using a NIED large-scale shaking table -Design of apparatus and preliminary results-, Rep. Nat'l Res. Inst. Earth Sci. Disas. Prev., 81, 15-35.
    18. Yamashita, F., Fukuyama, E., Mizoguchi, K., Fukuyama E., and Omura K., (2014), Probing the slip-weakening mechanism of earthquakes with electrical conductivity: Rapid transition from asperity contact to gouge comminution, Geophys. Res. Lett., 41, 341-347.
    19. Hashimoto, C., Fukuyama, E., and Matsu'ura, M. (2014), Physics-based 3-D simulation for earthquake generation cycles at plate interfaces in subduction zones, Pure and Applied Geophys., 171, 1705-1728, doi:10.1007/s00024-013-0716-4.
    20. Urata, Y., Hok, S., Fukuyama, E. and Madariaga, R., (2014), The effect of thermal pressurization on dynamic fault branching, Geophys. J. Int., 196, 1237-1246.
    21. Fukuyama, E. and K. X. Hao, (2013), Subparallel dipping faults that ruptured during the 2008 Wenchuan earthquake, Bull. Seismol. Soc. Am., 103, 2128-2134.
    22. Fukuyama, E., J. B. Rundle, and K. F. Tiampo, (2013), Preface for "Earthquake Hazard Evaluation", Pure and Applied Geophys., 170, 1-2.
    23. Kumagai, H., N. Pulido, Fukuyama, E., and S. Aoi, (2013), High-frequency source radiation during the 2011 Tohoku-Oki earthquake, Japan, inferred from KiK-net strong-motion seismograms, J. Geophys. Res. Solid Earth, 118, 222-239, 10.1029/2012JB009670.
    24. Kumagai, H., N. Pulido, Fukuyama, E. and S. Aoi, (2012), Strong localized asperity of the 2011 Tohoku-Oki earthquake, Japan, Earth Planets Space, 64, 649-654.
    25. Hok, S., E. Fukuyama, and C. Hashimoto, (2011), Dynamic rupture scenarios of anticipated Nankai-Tonankai earthquakes, southwest Japan, J. Geophys. Res., 116, B12319, 10.1029/2011JB008492.
    26. Hok, S. and E. Fukuyama, (2011), A new BIEM for rupture dynamics in half-space and its application to the 2008 Iwate-Miyagi Nairiku earthquake, Geophys. J. Int., 184, 301-324.
    27. Yamashita, F., E. Fukuyama, K. Mizoguchi, T. Togo, T. Mikoshiba, M. Sato, and C. Minowa, (2011), Quasi-Static Control Performance of the Large-Scale Shaking Table at National Research Institute for Earth Science and Disaster Prevention, Rep. Nat'l. Res. Inst. Earth Sci. Disas. Prev. , 79, 9-23 (in Japanese with English abstract).
    28. Fukuyama, E. and K. Mizoguchi, (2010), Constitutive parameters for earthquake rupture dynamics based on high-velocity friction tests with variable sliprate, Int. J. Fracture, 163, 15-26.
    29. Mizoguchi, K. and E. Fukuyama (2010), Laboratory measurements of rock friction at subseismic slip velocities, Int. J. Rock Mech. Min. Sci., 47, 1363-1371.
    30. Fukuyama, E. (2009), Introduction: Fault-Zone Properties and Earthquake Rupture Dynamics, In: Fault-Zone Properties and Earthquake Rupture Dynamics, Ed. E. Fukuyama, Academic Press-Elsevier, 1-13.
    31. Fukuyama, E., (2009), Dynamic rupture propagation of the 1995 Kobe earthquake, In: Fault-Zone Properties and Earthquake Rupture Dynamics, Ed. E. Fukuyama, Academic Press-Elsevier, 269-283.
    32. Fukuyama, E., R. Ando, C. Hashimoto, S. Aoi and M. Matsu'ura, (2009), Physics-based simulation of the 2003 Tokachi-oki, Japan, earthquake to predict strong ground motions, Bull. Seismol. Soc. Am., 99, 3150-3171.
    33. Fukuyama, E. (2009), Parameters for earthquake rupture dynamics, Zisin, Ser. 2, 61, S309-S314 (in Japanese with English abstract).
    34. Mizoguchi, K., T. Hirose, T. Shimamoto, and E. Fukuyama (2009), High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan, Tectonophys., 471, 295-296.
    35. Mizoguchi, K., T. Hirose, T. Shimamoto, and E. Fukuyama (2009), Fault heals rapidly after dynamic weakening, Bull. Seismol. Soc. Am., 99, 3470-3474.
    36. Tinti, E., M. Cocco, E. Fukuyama and A. Piatanesi, (2009), Dependence of slip weakening distance (Dc) on final slip during dynamic rupture of earthquakes, Geophys. J. Int., 177, 1205-1220.
    37. Mizoguchi, K., T. Hirose, T. Shimamoto, and E. Fukuyama (2008), Internal structure and permeability of the Nojima fault, southwest Japan, J. Struct. Geology, 30, 513-524.
    38. Fukuyama, E., I. Muramatu, and T. Mikumo (2007), Seismic moment of the 1891 Nobi, Japan, earthquake estimated from historical seismograms, Earth Planets Space, 59, 553-559.
    39. Fukuyama, E., I. Muramatu, and T. Mikumo (2007), ERRATA: Seismic moment of the 1891 Nobi, Japan, earthquake estimated from historical seismograms, Earth Planets Space, 59, 987.
    40. Fukuyama, E. and T. Mikumo (2007), Slip-weakening distance estimated at near-fault stations, Geophys. Res. Lett., 34, L09302, 10.1029/2006GL029203.
    41. Fukuyama, E. (2007), Fault structure, stress, friction and rupture dynamics of earthquakes, In: Advances in Earth Sciences: From Earthquakes to Global Warming, Eds. P. R. Sammonds and J. M. T. Thompson, Imperial College Press, 109-132.
    42. Mizoguchi, K., M. Takahashi, K. Masuda, and E. Fukuyama (2007), Fault strength drop due to phase transitions in the pore fluid, Geophys. Res. Lett., 34, L09313, 10.1029/2007GL029345.
    43. Mizoguchi, K., E. Fukuyama, K. Kitamura, M. Takahashi, K. Masuda, and K. Omura, (2007), Depth dependent strength of the fault gouge at the Atotsugawa fault, central Japan: A possible mechanism for its creeping motion, Phys. Earth Planet. Interi., 161, 115-125.
    44. Mizoguchi, K., T. Hirose, T. Shimamoto, and E. Fukuyama (2007), Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake, Geophys. Res. Lett., 34, L01308, 10.1029/2006GL027931.
    45. Fukuyama, E. and T. Mikumo, (2006), Dynamic rupture propagation during the 1891 Nobi, central Japan, earthquake: A possible extension to the branched fault, Bull. Seismol. Soc. Am., 96, 1257-1266.
    46. Mikumo, T. and E. Fukuyama (2006), Near-source released energy in relation to fracture energy on earthquake faults, Bull. Seismol. Soc. Am., 96, 1177-1181.
    47. Mizoguchi, K., T. Hirose, T. Shimamoto, and E. Fukuyama (2006), Moisture-related weakening and strengthening of a fault activated at seismic slip rates, Geophys. Res. Lett., 33, L16319, 10.1029/2006GL026980.
    48. Fukuyama, E. (2005), Radiation energy estimated at earthquake source, Geophys. Res. Lett., 32, L13308, 10.1029/2005GL022698.
    49. Di Luccio, F., E. Fukuyama, and N. A. Pino, (2005), The 2002 Molise earthquake sequence: What can we learn about the tectonics of southern Italy?, Tectonophys., 405, 141-154.
    50. Jin, A. and E. Fukuyama 2005, Seismic energy for shallow earthquake in southwest Japan, Bull. Seismol. Soc. Am., 95, 1314-1333.
    51. Tinti, E., E. Fukuyama, A. Piatanesi, and M. Cocco, (2005), A kinematic source-time function compatible with earthquake dynamics, Bull. Seismol. Soc. Am., 95, 1211-1223.
    52. Yamashita, F., E. Fukuyama, and K. Omura, (2004), Estimation of fault strength: Reconstruction of stress before the 1995 Kobe earthquake, Science, 306, 261-263.
    53. Aki, K., A. Jin, and E. Fukuyama (2004), IUGG Hagiwara Symposium Preface, Earth Planets Space, 56, 687-687.
    54. Fukuyama, E., R. Ikeda, and C. A. J. Wibberley, (2004), Physics of Active Faults - Theory, Observation and Experiments, Tectonophys., 378, 141-142.
    55. Kubo, A. and E. Fukuyama (2004), Stress field and fault reactivation angles of the 2000 western Tottori aftershocks and the 2001 northern Hyogo swarm in southwest Japan, Tectonophys., 378, 223-239.
    56. Piatanesi, A., E. Tinti, M. Cocco, and E. Fukuyama (2004), The dependence of traction evolution on the earthquake source time function adopted in kinematic rupture models, Geophys. Res. Lett., 31, L04609, 10.1029/2003GL019225.
    57. Fukuyama, E., T. Mikumo, and K. B. Olsen, (2003), Estimation of the critical slip-weakening distance: Theoretical background, Bull. Seismol. Soc. Am., 93, 1835-1840.
    58. Fukuyama, E., W. L. Ellsworth, F. Waldhauser, and A. Kubo, (2003), Detailed fault structure of the 2000 western Tottori, Japan, earthquake sequence, Bull. Seismol. Soc. Am., 93, 1468-1478.
    59. Fukuyama, E. (2003), Numerical modeling of earthquake dynamic rupture: Requirements for realistic modeling, Bull. Earthq. Res. Inst., Univ. Tokyo, 78, 167-174.
    60. Fukuyama, E. (2003), Earthquake dynamic rupture and stress field around the fault, J. Geography, 112, 850-856 (in Japanese with English abstract).
    61. Kubo, A. and E. Fukuyama (2003), Stress field along the Ryukyu arc and the Okinawa trough inferred from moment tensors of shallow earthquakes, Earth Planet. Sci. Lett., 210, 305-316.
    62. Aochi, H., R. Madariaga, and E. Fukuyama (2003), Constraint of fault parameters inferred from nonplanar fault modeling, G-cubed, 4(2), 10.1029/2001GC000207.
    63. Mikumo, T., K. B. Olsen, E. Fukuyama, and Y. Yagi, (2003), Stress breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults, Bull. Seismol. Soc. Am., 93, 264-282.
    64. Fukuyama, E. and K. B. Olsen, (2002), A condition for a super-shear rupture propagation in a heterogeneous stress field, Pure Appl. Geophys., 159, 2047-2056.
    65. Fukuyama, E., C. Hashimoto, and M. Matsu'ura, (2002), Simulation of the transition of earthquake rupture from quasi-static growth to dynamic rupture, Pure Appl. Geophys., 159, 2057-2066.
    66. Aochi, H. and E. Fukuyama (2002), Three dimensional nonplanar simulation of the 1992 Landers earthquake, J. Geophys. Res., 107(B2), 10.1029/2000JB000061.
    67. Aochi, H., Madariaga, R. and E. Fukuyama (2002), Effect of stress during rupture propagation along nonplanar faults, J. Geophys. Res., 107(B2), 10.1029/2001JB000500.
    68. Kubo, A., E. Fukuyama, H. Kawai, and K. Nonomura, (2002), NIED seismic moment tensor catalogue for regional earthquake around Japan: Quality test and application, Tectonophys., 356, 23-48.
    69. Sagiya, T, T. Nishimura, Y. Hatanaka, E. Fukuyama, and W. L. Ellsworth, (2002), Crustal movements associated with the 2000 western Tottori earthquake and its fault models, Zisin (J. Seismol. Soc. Japan)
      Ser. 2, 54, 523-534 (in Japanese with English abstract).
    70. Fukuyama, E., A. Kubo, H. Kawai, and K. Nonomura, (2001), Seismic remote monitoring of stress field, Earth Planets Space, 53, 1021-1026.
    71. Fukuyama, E. and R. Madariaga, (2000), Dynamic propagation and interaction of a rupture front on a planar fault, Pure Appl. Geophys., 157, 1959-1979.
    72. Fukuyama, E. and Dreger, D. S., (2000), Performance test for automated automated moment tensor determination system by using synthetic waveforms of the future Tokai earthquake, Earth Planets Space, 52, 383-392.
    73. Aochi, H., E. Fukuyama, and M. Matsu'ura, (2000), Selectivity of spontaneous rupture propagation on a branched fault, Geophys. Res. Lett., 27, 3635-3638.
    74. Aochi, H., E. Fukuyama, and M. Matsu'ura, (2000), Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium, Pure Appl. Geophys., 157, 2003-2027.
    75. Tada, T., E. Fukuyama, and R. Madariaga, (2000), Non-hypersingular boundary integral equations for 3-D non-planar crack dynamics, Computational Mechanics, 25, 613-626.
    76. Fukuyama, E. and R. Madariaga, (1998), Rupture dynamics of a planar fault in a 3D elastic medium: Rate- and slip- weakening friction, Bull. Seismol. Soc. Am., 88, 1-17.
    77. Fukuyama, E., M. Ishida, D. S. Dreger, H. Kawai, (1998), Automated seismic moment tensor determination by using on-line broadband seismic waveforms, Zisin (J. Seismol. Soc. Japan) Ser. 2, 51, 149-156 (in Japanese with English abstract).
    78. Mendoza, C. and E. Fukuyama (1996), The July 12, 1993, Hokkaido Nansei-Oki, Japan, earthquake: Coseismic slip pattern from strong-motion and teleseismic recordings, J. Geophys. Res., 101, 791-801.
    79. Yamashita, T. and E. Fukuyama (1996), Apparent critical slip displacement caused by the existence of a fault zone, Geophys. J. Int., 125, 459-472.
    80. Fukuyama, E. and R. Madariaga, (1995), Integral equation method for plane crack with arbitrary shape in 3D elastic medium, Bull. Seismol. Soc. Am., 85, 614-628.
    81. Fukuyama, E. and T. Mikumo, (1993), Dynamic rupture analysis: Inversion for the source process of the 1990 Izu-Oshima, Japan, earthquake, J. Geophys. Res., 98, 6529-6542.
    82. Fukuyama, E. (1991), Inversion for the rupture details of the 1987 east Chiba earthquake, Japan, using a fault model based on the distribution of relocated aftershocks, J. Geophys. Res., 96, 8205-8217.
    83. Fukuyama, E. (1991), Analysis and interpretation of the heterogeneous rupture process: application of the empirical Green's function method and nonlinear inversion technique to large earthquakes, Tectonophys., 197, 1-17.
    84. Fukuyama, E., S. Kinoshita, and F. Yamamizu, (1991), Unusual high-stress drop subevent during the M5.5 earthquake, the largest event of the 1989 Ito-oki swarm activity, Geophys. Res. Lett., 18, 614-644.
    85. Oikawa, J., Y. Ida, K. Yamaoka, H. Watanabe, E. Fukuyama, and K. Sato, (1991), Ground deformation associated with volcanic tremor at Izu-Oshima volcano, Geophys. Res. Lett., 18, 443-446.
    86. Ukawa M., K. Obara, and E. Fukuyama (1991), Seismic pulses suggesting an implosive source at the 1989 Ito-oki submarine eruption, central Japan, Geophys. Res. Lett., 18, 873-876.
    87. Fukuyama, E. and M. Takeo, (1990), Analysis of the near-field seismograms observed during the eruption of Izu-Oshima volcano on November 16, 1987, Kazan (J. Volcanol. Soc. Japan) Ser. 2, 35, 283-297 (in Japanese with English abstract).
    88. Fukuyama, E. and K. Irikura, (1989), Heterogeneity of the 1980 Izu-Hanto-Toho-Oki earthquake rupture process, Geophys. J. Int., 99, 711-722.
    89. Fukuyama, E. and S. Kinoshita, (1989), Rupture process of the 1987 east off Chiba earthquake using the empirical Green's function method, Zisin (J. Seismol. Soc. Japan) Ser. 2, 42, 39-48 (in Japanese with English abstract).
    90. Fukuyama, E. (1988), Saw-teeth-shaped tilt change associated with volcanic tremor at the Izu-Oshima volcano, Kazan (J. Volcanol. Soc. Japan) Ser. 2, 33, S128-S135 (in Japanese with English abstract).
    91. Shimada, S., H. Watanabe, K. Fukui, and E. Fukuyama (1988), Crustal tilt observation associated with the 1986 eruption of Izu-Oshima volcano, Kazan (J. Volcanol. Soc. Japan) Ser. 2, 33, S161-S169 (in Japanese with English abstract).
    92. Yamamoto, E., K. Kumagai, S. Shimada, and E. Fukuyama (1988), Crustal tilt movements associated with the 1986-1987 volcanic activities of Izu-Oshima volcano - Results of continuous crustal tilt observation at Gojinka and Habu -, Kazan (J. Volcanol. Soc. Japan) Ser. 2, 33, S170-S178 (in Japanese with English abstract).
    93. Fukuyama, E. and K. Irikura, (1986), Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using a waveform inversion method, Bull. Seismol. Soc. Am., 76, 1623-164.

(2) Books and Special Issues

    1. Fukuyama, E., J. B. Rundle and K. F. Tiampo (2013), Earthquake Hazard Evaluation, Birkhauser, 170 (Editor).
    2. Fukuyama, E. (2009), Fault-zone Properties and Earthquake Rupture Dynamics, Academic Press-Elsevier (Editor, Chapter Author).
    3. Aki, K., A. Jin and E. Fukuyama (2004), IUGG Hagiwara Symposium, Earth Planets Space, 56 (Editor)
    4. Fukuyama, E., R. Ikeda and C. A. J. Wibberley, (2004), Physics of Active Faults - Theory, Observation and Experiments, Tectonophys., 378 (Editor)

5.Honors

6.Professional Affiliations

7.Recent Professional Service

2017/11/21 updated